Category Archives: friends

The science of friendship

Flickr/JimBoudThere is an interesting article by Robin Dunbar in The New Scientist: Dunbar’s Number was named after Robin, from his theorizing that humans only had the brain capacity to manage roughly 150 relationships, although depending on gender, social skills and personality, this number could vary from 100-250.  Dunbar observes that communication often breaks down when one exceeds 150 individuals (as evidenced in the Crimean War by the Charge of the Light Brigade) and the modern military and businesses only exceed these limits through strict hierarchies.

Dunbar theorizes that language, laughter and communal music-making evolved as a way to stay connected to a larger group of individuals than possible through physical acts like grooming. Dunbar: “[N]ot only can we speak to many people at the same time, we can also exchange information about the state of our networks in a way that other primates cannot. Gossip, I have argued, is a very human form of grooming.”  Christakis and Fowler (in the excellent book Connected) note that “…language is a less yucky and more efficient way to get to know our peers since we can talk to several friends at once but only groom them one at a time.  In fact, in a conversation with a small group, we can assess the behavior, health, aggressiveness, and altruism of several individuals simultaneously.  Plus, we can talk to someone else while engaged in another activity, like foraging for food in a refrigerator.”  Christakis and Fowler note how radical the idea is that language evolved not primarily as a way to exchange information but to maintain group cohesion.   “Dunbar estimates that language would have to be 2.8 times more efficient than grooming in order to sustain the [average] group size seen in humans” (one speaker per 2.8 listeners).

While language may have originally evolved, as per Dunbar, to maintain a slightly larger group size, once developed it was in principle possible to use language to maintain social relations on a tribal or national level.

A few other excerpts from Dunbar’s article:

Group living needn’t tax your intelligence too much. In a loose herd, cues such as body size or aggressiveness may be enough to judge whether you should challenge or steer clear of another individual. In bonded networks, however, you need to know each member’s personal characteristics and those of the friends and relations that might come to their aid. Keeping track of the ever-changing web of social relationships requires considerable mental computing power.

As a reflection of this, there is a correlation between the size of a species’ brain– in particular its neocortex– and the typical size of its social groups. In other words, brain size seems to place a limit on the number of relationships an individual can have. This link between group size and brain size is found in primates and perhaps a handful of other mammals that form bonded societies such as dolphins, dogs, horses and elephants. In all other mammals and birds, unusually large brains are found only in species that live in pair-bonded (monogamous) social groups.

As group size increases so too does the number of relationships that need servicing. Social effort is not spread evenly. Individuals put most effort into their closest relationships to ensure that these friends will help out when they need them. At the same time they maintain the coherence of the group. As a result, social networks resemble a nested hierarchy with two or three best friends linked into larger groupings of more casual friends, and weaker relationships bonding the entire group. This hierarchy typically has a scaling ratio of three– each layer of decreasing intimacy is three times larger than the one before it….

HUMAN SOCIAL NETWORKS

Our social networks can have dramatic effects on our lives. Your chances of becoming obese, giving up smoking, being happy or depressed, or getting divorced are all influenced by how many of your close friends do these things. A good social network could even help you live longer since laughing with friends triggers the release of endorphins, which seem to “tune” the immune system, making you more resilient to disease. So what factors influence the form and function that our social networks take.

In traditional societies, everyone in the community is related to everyone else, either as biological relatives or in-laws. In post-industrial societies this is no longer true– we live among strangers, some of whom become friends. As a result, our social circles really consist of two separate networks– family and friends– with roughly half drawn from each group.

Because the pull of kinship is so strong, we give priority to family, choosing to include them in our networks above unrelated individuals. Indeed, people who come from large extended families actually have fewer friends. One reason we favour kin is that they are much more likely to come to our aid when we need help than unrelated individuals, even if these are very good friends.

Family and friend relationships differ in other important ways, too. One is that friendships are very prone to decay if untended. Failure to see a friend for six months or so leaves us feeling less emotionally attached to them, causing them to drop down through the layers of our network hierarchy. Family relationships, by contrast, are incredibly resilient to neglect. As a result, the family half of our network remains constant throughout most of our lives whereas the friendship component undergoes considerable change over time, with up to 20 per cent turnover every few years.

More than 60 per cent of our social time is devoted to our five closest friends, with decreasing amounts given over to those in the layers beyond, until at the edge of the 150 layer are people we perhaps see once a year or at weddings and funerals. Nevertheless, the outer reaches of our social networks have a positive role to play. The sociologist Mark Granovetter at Stanford University in California has argued that these weak links in our social networks are especially useful in the modern world. It is through this widespread network of contacts that we find out about job vacancies and other economic or social opportunities. More importantly, perhaps, 70 per cent of us meet our romantic partners through these contacts.

Read “Getting Connected” by Robin Dunbar (New Scientist, 4/3/12)

Praying alone is no fun; having friends at church makes you happier

Flickr photo by Shavar Ross

[Also cross-posted on the American Grace Blog]
American Grace research team members Chaeyoon Lim and Robert Putnam have an article in the prestigious American Sociological Review demonstrating that religion actually makes you happier and it works through having close friends at church.

“Our study offers compelling evidence that it is the social aspects of religion rather than theology or spirituality that leads to life satisfaction,” said Chaeyoon Lim, assistant professor of sociology at the Univ. of Wisconsin-Madison, who led the study. “Listening to sermons or praying is not enough.  In particular, we find that friendships built in religious congregations are the secret ingredient that makes people happier.”

A host of studies have found a correlation between happiness and religiosity, but they suffered from the vulnerabilities of any single shot survey. Was religiosity truly causing happiness, was happiness causing greater religiosity, or was some third factor responsible (say an extroverted gene that made people both happier and more likely to go to “church”)? With the large nationally representative Faith Matters surveys, which interviewed the same Americans twice in a 6-9 month period, Lim and Putnam demonstrate that increased church attendance over that 6-9 month period increases life satisfaction. Surprisingly, they find that more overtly religious factors like theology (e.g., belief about the type of God or the afterlife or what religion you belong to) and private religious practices (e.g., experiencing God’s presence in your life or saying Grace or frequency of prayer) did not predict greater life satisfaction.

So what explained the power of religious attendance? Lim and Putnam found that it was having close friends in one’s house of worship. While friends in general cause people to have greater life satisfaction, friends at church serve as “super-charged” friends, with an even stronger impact on life satisfaction than secular friends.

It’s not clear exactly why close friends at church have such strong power. Lim and Putnam speculate that these church friends anchor “a strong sense of belonging in these religious communities” and provide parishioners with “morally-infused social support. In other words, if one seeks life satisfaction, it is neither faith nor communities alone that are important, but communities of faith. For life satisfaction, praying together seems better than either bowling together or praying alone. These findings suggest that religious leaders should invest more of their time, treasure and talent in deepening the social dimensions of congregational life, such as through small support or worship groups, potlucks and choirs. This is likely to pay dividends to their congregants in making them happier and also benefit the religious leaders by making their congregants more likely to stay active religious members.”

Specifically, they find that those who attend church sporadically but nonetheless have close friends at church, likely working through religious spouses, are quite high in life satisfaction whereas those who attend church regularly but don’t have church friends are not. “According to the study, 33 percent of people who attend religious services every week and have three to five close friends in their congregation report that they are ‘extremely satisfied’ with their lives” (a 10 on the 1 to 10 question scale). “In comparison, only 19 percent of people who attend religious services weekly, but who have no close friends in their congregation report that they are extremely satisfied. On the other hand, 23 percent of people who attend religious services only several times a year, but who have three to five close friends in their congregation are extremely satisfied with their lives. Finally, 19 percent of people who never attend religious services, and therefore have no friends from congregation, say they are extremely satisfied with their lives.”

Note: Putnam and Lim control for the all the natural demographic correlates that might be causing spurious findings.

The Faith Matters findings apply to the three main Christian traditions (Mainline Protestant, Evangelical Protestant, and Catholic). “We also find similar patterns among Jews and Mormons, even with a much smaller sample size,” said Lim, who noted that there were not enough Muslims or Buddhists in the data set to test the model for those groups.

It’s possible that there are other real-world secular examples of groups where in-group friendships provide the same level of ‘morally-infused” social support: e.g., 12-step programs, or zealous environmental activist networks, or uncorrupted unions, or MADD. Since these findings are relatively new, we haven’t firmly tested to find secular equivalents of these morally-infused networks although it is clear that there is nothing in the US that has anything like the frequency of friends of church, since so many more Americans are in the pews on a Sunday than participating weekly in an environmental group or a 12-step program. The Prime Minister of the UK, David Cameron has made clear to us in conversations, given much lower levels of religiosity in that country, that he is actively interested in finding out if there are secular takeaways from these life satisfaction findings that could be applied in the UK without exhorting more Brits to attend and make friends at church; Cameron’s interest is also sparked by his recent decision to actively measure life satisfaction in the UK as a key indicator of how well government is doing.

We’ll also be doing some further testing in additional surveying we are doing to try to understand more about what makes “close friends at church” so powerful. We welcome your thoughts…

CNN notes: “it is worth examining in the future why this study did not find the same link between happiness and spirituality that others did, the authors say. This may have to do with how different aspects of religion are measured. For example, those who reported that they ‘feel God’s love’ seemed to have more life satisfaction than those who did not, but this did not apply for similar questions about belief in God. Also, it is impossible to draw conclusions about whether ‘feeling God’s love’ causes happiness or vice versa. Could other networks of people have the same effect on happiness? The authors say that if this is possible, it’s hard to think of a non-religious context with a similar strength of identity, intensity of participation in ritual, and great scale and scope of the people in it.”

Cite: “Religion, Social Networks, and Life Satisfaction,” American Sociological Review, 75(6), December 2010.

Beyond CNN, see news stories in USA TodayNational Post, Discovery, Live Science, Science News, TIMES of India, Montreal Gazette, and Daily Mail.

NYC Street-art trying to build social capital

This is a social capital friendly street art that is appearing around New York City.  I’m interested in learning more about whether it is working.  The artistic effort is called “Living Exercises”; not sure who the artist is.

One assumes there is a lot of self-selection going on here — the misanthropes are unlikely to sign up, but maybe this a useful social capital nudge for those of us interested in making new acquaintances.

[hat-tip to "How to Make Friends in Brooklyn"]

The Friendship Paradox: using social networks to predict spread of epidemics

Nick Christakis and James Fowler (whose research we’ve previously highlighted) is back with research that shows how one can easily use “sensors” in a network to track and get early warning regarding the spread of epidemics.

They took advantage of the “friendship paradox” to do so.  In any real-life network, our friends are more popular than we are.  [This is true mathematically in any group with some loners and some social butterflies.  If you poll members in the group about their friendships, far more of those friends who are reported are going to be the social butterflies.  If far more people reported friendships with the loners, they wouldn't be loners.  See discussion here.]

Thus by asking random people in a network, in this case Harvard students, about their friends, researchers know that their friends are more centrally located in these networks.    Then one can track behavior among the random group and their friends, in this case the spread of H1N1 flu (swine flu) among 744 Harvard students in 2009.

Those more central in these networks (the “friend” group) got the flu a full 16-47 days earlier than the random group.  Thus, for public authorities, monitoring such a “friend” group could give one early indication of a spreading epidemic; they could serve as “canaries in the coal mine”.  If the process of spreading was person-to-person rather than being exposed to some impersonal information (via a website or a broadcast), one could also track the difference between a random group and a friend group to predict other more positive epidemics, like the spread of information, or the diffusion of a product, or a social norm.

We write in general on this blog about the positive benefits of social ties (social capital), but Fowler and Christakis’ study also shows you that having friends and being centrally located has its costs: in this case getting the flu faster.  [In some ways, this is analogous to Gladwell's discussion in the Tipping Point of how Mavens, Connectors and Salesmen may be disproportionately influential in the spread of ideas through networks, although Fowler and Christakis are far more mathematical in identifying who these central folks are.]

The “friends group manifested the flu roughly two weeks prior to the random group using one method of detection, and a full 46 days prior to the epidemic peak using another method.

‘We think this may have significant implications for public health,’ said Christakis. ‘Public health officials often track epidemics by following random samples of people or monitoring people after they get sick. But that approach only provides a snapshot of what’s currently happening. By simply asking members of the random group to name friends, and then tracking and comparing both groups, we can predict epidemics before they strike the population at large. This would allow an earlier, more vigorous, and more effective response.’

‘If you want a crystal ball for finding out which parts of the country are going to get the flu first, then this may be the most effective method we have now,’ said Fowler. ‘Currently used methods are based on statistics that lag the real world – or, at best, are contemporaneous with it. We show a way you can get ahead of an epidemic of flu, or potentially anything else that spreads in networks.’

Christakis also notes that if you provided a random 30% in a population with immunity to a flu, you don’t protect the greater public, but if you took a random 30% of the population, asked them to name their friends, and then provided immunization to their friends, in a typical network the “friend” immunization strategy would achieve as high immunity protection for the entire network as giving 96% of the population immunity shots, but at less than 1/3 the cost.

The following video shows how the nodes that light up first (markers for getting the flu) are more central and far less likely to be at the periphery of the social network.  The red dots are people getting the flu; the yellow dots are friends of people with the flu and the size of the dot is proportional to how many of their friends have the flu.

Good summary of this research and its implications here: Nick Christakis TED talk (June 2010) – How social networks predict spread of flu.  Nick also discusses some of the implications of computational social science, which we’ve previously discussed here under the heading of digital traces.  Nick discusses how one could use data gathered from these networks (either passively or actively) to do things like predict recessions from patterns of fuel consumption by truckers, to communicate with drivers of a road of impending traffic jams ahead of them (by monitoring from cell phone users on the road ahead of them how rapidly they are changing cell phone towers) to asking those central in a mobile cellphone network (easily mapable today) to text their daily temperature (to monitor for impending flu epidemics).  Obviously these raise issues of privacy, which Nick does not discuss.

News release of study

Academic article in PLoS ONE

James Fowler on The Colbert Report discussing the book by Fowler and Christakis called Connected.


Nick Christakis presenting a talk at TED — The Hidden Influence of Social Networks. (February 2010).  In the talk he notes that while almost half of the variation in our number of friends is genetically-based (46%), that another equally large portion (47%) of whether your friends know each other is a function of whether your friends are the type that introduce (“knit”) their friends together or keep them apart (what they call “transitivity”).  About a third of whether you are in the center of social networks or not is genetically inherited.  Christakis believes that these social networks are critically important to transmitting ideas, and kindness, and information and goodness; and if society realized how valuable these networks were, we’d focus far more of our time, energy and resources into helping these networks to flourish.

Our genes influence our social networks

Chromosomes magnified - photo by BlueSunFlower

Chromosomes magnified - photo by BlueSunFlower

If you don’t have enough friends or aren’t the social butterfly of your class, now you can blame your genes.

Nick Christakis (Harvard Medical School) and James Fowler (UCSD political scientist) are back with more controversial findings suggesting some genetic determination in our social networks (both in forming friendships and determining where we are in social networks).  Christakis: “the beautiful and complicated pattern of human connection depends on our genes to a significant measure.”  Previous work by Christakis looked at how our social networks and who is in them shape our likelihood of obesity, happiness, and smoking, among other outcomes.

They researched 1,100 same-sex twins in the National Longitudinal Study of Adolescent Health (colloquially called “Add Health”). Add Health examined high school students in 1994-1995 and asked questions regarding economics, physical health and social involvement. Christakis and Fowler compared the social networks and patterns of identical same-sex twins against fraternal ones to separate nature (genes) from nurture (upbringing).

Their findings go far beyond what people might think about the genetic influence on personality traits (being outgoing, shy, etc.). For example, how often the subject was named as a friend and the likelihood that the subject’s friends knew one another were strongly genetically influenced, but interestingly not the number of friends that the subject listed. This suggests a genetic determinant of being popular (beyond a simple disposition toward being outgoing); further buttressing this interpretation, whether the subject was more the center of attention (central to these networks) or more of a social outcast (peripheral to these networks) was also heritable.

Christakis admits that some of the findings are puzzling, like the fact that the likelihood that my friends Bill and John know each other is attributable to my genes; what this likely means is that some people are genetically disposed to introduce their friends to each other more or to host or arrange social events where these friends would have chances to meet each other.

‘Given that social networks play important roles in determining a wide variety of things ranging from employment and wages to the spread of disease, it is important to understand why networks exhibit the patterns that they do,’  Matthew Jackson, a Stanford University economist, wrote in a commentary accompanying the study called “Do We Inherit Our Positions in Life?”.

James Fowler… said its implications go beyond the theoretical. For some time, scientists have suspected a genetic role in certain conditions, such as obesity. Now, Mr. Fowler wants to investigate whether the dynamics of social networks might affect public-health outcomes, for instance, by exposing people to certain behaviors, such as smoking.”

“Our work shows how humans, like ants, may assemble themselves into a ‘super-organism’ with rules governing the assembly, rules that we carry with us deep in our genes,” says Nicholas Christakis.  Christakis et al. also believe that there may be an evolutionary explanation for their findings since one’s position in social networks had costs or benefits to the survival of one’s genes. Being central to a group likely contributed to survival during periods of food scarcity since one could learn where food supplies were, while being peripheral to groups helped genes survive in periods where deadly germs were being transmitted by social contact. Christakis: “It may be that natural selection is acting on not just things like whether or not we can resist the common cold, but also who it is that we are going to come into contact with.”  The paper notes: “There may be many reasons for genetic variation in the ability to attract or the desire to introduce friends.  More friends may mean greater social support in some settings or greater conflict in others.  Having denser social connections may improve groupsolidarity, but it might also insulate a group from beneficial influence or information from individuals outside the group.”  The authors note that more work is required to understand what specific genes are at work and what possible mediating mechanisms might be.

The authors acknowledge some controversy in studies comparing identical twin studies to fraternal twins, with critics noting that identical twins may have a stronger affiliation with  each other that causes them to be more influenced by each other than fraternal twins.  The authors note that twin studies have been validated by comparing identical twins raised apart versus together (suggesting that it is not the shared environment).  The authors further note that personality and cognitive differences between identical and fraternal twins persist even among twins mistakenly believed to be identical by their parents (indicating that parental patterns in raising these ‘identical twins’ can’t explain the outcome).  Finally, they note that that once twins reach adulthood, identical twins living apart tend to become more similar with age, which doesn’t fit with a notion of the importance of their shared environment.

The study appeared online in James Fowler, Christopher Dawes and Nicholas Christakis,  “Model of Genetic Variation in Human Social Networks” in Proceedings of the National Academy of Sciences journal (January 26, 2009).

“More specifically, the results show that genetic factors account for 46% [95% confidence interval 23%, 69%] of the variation in in-degree (how many times a person is named as a friend), but heritability of out-degree (how many friends a person names) is not significant (22%, CI 0%, 47%). In addition, node transitivity [the likelihood that two of a person's contacts are connected to each other] is significantly heritable, with 47% (CI 13%, 65%) of the variation explained by differences in genes. We also find that genetic variation contributes to variation in other network characteristics; for example, bertween-ness centrality [the fraction of paths through the networks that pass through a given node] is significantly heritable (29%, CI 5%, 39%).”

See also “Genes and the Friends You Make” (Wall Street Journal, 1/27/09 by Philip Shishkin)

See other articles by Christakis et. al on social networks.